

GEEK GUIDE CONTAINERS 101

2

What Is a Container and How are Containers Used? ������� 5

What Are the Values of Containers? ������������������������������� 6

Who Are the Container Providers? ��������������������������������� 8

Do Companies Need to Leave the VM Structure
Entirely, or Can There Be Hybrid Approaches? ����������� 10

Why Are Some Firms Waiting to Use Containers? ������� 11

What’s Involved in Managing Containers? ������������������� 14

Who Are Some of the Major Players in the
Container Runtime Space? ��� 16

Benefits Gained by Switching to Containers—
Case Studies ��� 18

How Does Configuration Management Apply
to Containers, and How Does Puppet Accelerate
the Adoption of Container Technologies? �������������������� 19

Conclusion �� 25

Table of Contents

SOL LEDERMAN is a technical people-oriented professional with more than thirty
years of broad experience in system administration, software design and development,
technical support, training, documentation, troubleshooting and customer management.
Sol currently divides his time between running IT for a software firm and providing a
variety of tech services to the federal government.

GEEK GUIDE CONTAINERS 101

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE CONTAINERS 101

4

About the Sponsor
Puppet

Puppet is driving the movement to a world of unconstrained

software change. Its revolutionary platform is the industry

standard for automating the delivery and operation of the

software that powers everything around us. More than

33,000 companies—including more than 75 percent of the

Fortune 100—use Puppet’s open source and commercial

solutions to adopt DevOps practices, achieve situational

awareness and drive software change with confidence.

Based in Portland, Oregon, Puppet is a privately held

company with more than 470 employees around the world.

Learn more at http://puppet.com.

https://puppet.com

GEEK GUIDE CONTAINERS 101

5

What Is a Container and How Are
Containers Used?
A starting point for an exploration of containers and how

they’re used is this simple definition: a container is a

packaging format for a unit of software that ships together.

A container is a format that encapsulates a set of

software and its dependencies, the minimal set of runtime

resources the software needs to do its function. A container

is a form of virtualization that is similar to a virtual machine

(VM) in some ways and different in others. VMs encapsulate

functionality in the form of the application platform and

its dependencies. The key difference between VMs and

containers is that each VM has its own full-sized OS,

while containers typically have a more minimal OS.

Containers
 101
 SOL LEDERMAN

GEEK GUIDE CONTAINERS 101

6

CIO’s article “What are containers and why do you need

them?” explains the motivation driving container use

(http://www.cio.com/article/2924995/enterprise-software/

what-are-containers-and-why-do-you-need-them.html):

Containers are a solution to the problem of how to get

software to run reliably when moved from one computing

environment to another. This could be from a developer’s

laptop to a test environment, from a staging environment

into production and perhaps from a physical machine in a

data center to a virtual machine in a private or public cloud.

Containers, because they don’t encapsulate an entire OS

and its services, are an order or two of magnitude smaller

than VMs. Because they’re lightweight and have a minimal

OS component, containers have some major advantages.

They start up quickly and move easily from one platform to

another compatible one, and a number of containers can

fit into the disk footprint of a single VM.

What Are the Values of Containers?
Containers are particularly useful in rapid development

environments. The develop/deploy process cycles

Containers, because they don’t encapsulate
an entire OS and its services, are an order or
two of magnitude smaller than VMs.

https://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html
https://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html

GEEK GUIDE CONTAINERS 101

7

through these six steps:

1. Develop or update an application.

2. Deploy the application to the testbed.

3. QA new code.

4. Move code to the staging site.

5. Verify operation in the staging environment.

6. Move the new code to production.

These cycles occur frequently and involve multiple

parties (developers, QA staff, system administrators

and perhaps DevOps staff), and any bottlenecks in

provisioning the resources an application needs wil l

delay releases. Beyond the concerns of moving software

through the l ife cycle quickly are the risks introduced

by differences in the development, testbed, staging

and production environments. Of particular concern are

bugs introduced into production caused by differences

in environments. The later in the l ife cycle bugs are

caught, the more expensive and time consuming they

are to correct.

Containers are particularly valuable in rapid

development cycles for three reasons. First, containers

are much quicker to spin-up than servers or VMs.

Second, smaller footprints make better uti l ization

GEEK GUIDE CONTAINERS 101

8

of server hardware than VMs. And third, because

containers enclose their running environment including

all of their dependencies, containers greatly minimize

the risks of inconsistencies in environments. Later in this

ebook, I discuss the importance of carefully managing

the complexities of a container environment to speed

deployments while minimizing risks.

Who Are the Container Providers?
Table 1 shows the results of ClusterHQ’s “2016 Container

Market Adoption Survey” (https://clusterhq.com/assets/

pdfs/state-of-container-usage-june-2016.pdf), which lists

utilization percentages of the seven most popular container

technologies according to survey respondents (note that

some enterprises use more than one container technology,

so the percent total is greater than 100%).

Table 1. Utilization Percentages of the Seven Most Popular
Container Technologies

Docker 94%

LXC 15%

rkt 10%

FreeBSD Jails 5%

Solaris Zones 5%

Other 5%

LXD 4%

https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf

GEEK GUIDE CONTAINERS 101

9

Docker is by far the most widely adopted container

technology. The ConvoxBlog explains why in its

post “Why Docker? The Image API is Everywhere”

(https://convox.com/blog/why-docker):

The reason to use Docker is for its modern packaging

and runtime APIs. The Docker Image and Container APIs

have become a de facto standard. Every major computing

platform—from OS X to AWS—now has native support for

working with Docker Images and Containers.

Docker is also popular because it is tightly integrated

with the Linux kernel and runs on all major Linux

distributions. Less adopted FreeBSD Jails and Solaris

Zones, in contrast, are built on less popular OSes. And,

Docker has major community involvement through its

cloud-based registry, testing and collaboration service,

Docker Hub (https://hub.docker.com).

Because the container space continues to see much

experimentation and growth, there are a large number

of container technology providers, with a large matrix of

overlapping features. No single document could provide

a fair comparison of the many offerings. However,

Wikipedia has an article, “Operating-system-level

virtualization”, with a table of 17 implementations

(as of September 2016) showing the OS, l icense and

feature information for each (https://en.wikipedia.org/

wiki/Operating-system-level_virtualization). This table is

an excellent jumping off point for comparing offerings

at a very high level.

https://convox.com/blog/why-docker
https://hub.docker.com
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

GEEK GUIDE CONTAINERS 101

10

Do Companies Need to Leave
the VM Structure Entirely, or
Can There Be Hybrid Approaches?
Using containers is not an all-or-nothing proposition for

enterprises with a heavy investment in VMs. Plus, it doesn’t

make sense to update or refactor some applications to run

in containers. The migration from VM-centric applications to

containerized applications can be a planned and gradual one.

A bigger question than whether containers and VMs

can coexist is how to network them together. Enterprises

are faced with a mix of technologies, some running in

containers, some in VMs and some on bare metal. To

add to the complexity, some applications are running

in public clouds, and others are running in private

clouds. The New Stack introduces the hybrid cloud

and container virtual networking as the new normal

in its article “How Overlay Networks Pave the Way

for Seamless Hybrid Clouds” (http://thenewstack.io/

containerizing-makes-hybrid-cloud-easier-adopt):

The question then becomes how to weave together all the

containers running on and off premises and connect them

to other (uncontained) services, without this turning into

a configuration hairball and security nightmare.

A bigger question than whether containers and
VMs can coexist is how to network them together.

https://thenewstack.io/containerizing-makes-hybrid-cloud-easier-adopt
https://thenewstack.io/containerizing-makes-hybrid-cloud-easier-adopt

GEEK GUIDE CONTAINERS 101

11

Container overlay networks are essentially the de-facto

standard now because they avoid the configuration hairball.

The container virtual network rides on top of the underlying

IP networks, so it looks the same to the application regardless

of differences in the underlying network technology.

A data center network doesn’t work the same way as,

say, AWS Virtual Private Cloud. Essentially the problem of

managing the differences is pushed down into the container

networking layer. That means there is no configuration or

code required in the application itself: it can just use regular

networking constructs like TCP/IP and DNS.

Planning a migration path will require major effort,

but fortunately, the tools and practices to enable such

an effort are evolving rapidly.

Why Are Some Firms Waiting
to Use Containers?
Enterprises commonly cite one or more of the following

six reasons for not rushing to containers:

1. Not all applications fit into the container model.

Containers are particularly well suited to tasks that

are stateless or can be carved into small units of

functionality (that is, microservices) and that benefit

from scaling specific tasks rather than the entire

application. On the other hand, you will need to

consider how to deal with data persistence and

storage. There may be no reason to move monolithic

applications that run fine in VMs to containers.

GEEK GUIDE CONTAINERS 101

12

2. Security is a major concern because containers share a

common OS kernel. A virus that infects one container

places other containers that share that kernel at

risk. Although SELinux can help mitigate risk, many

enterprises are reluctant to deploy containers in

production environments. VMs are less susceptible

to spreading vulnerabilities, because they are more

isolated from the hypervisor, and each runs its own OS.

Additionally, the landscape of hardware virtualization

is much more stable than that of containers.

3. The container ecosystem is evolving rapidly and may

not be ready for production in your organization.

Developer-driven container usage can be at odds with

operational, security and compliance concerns. While

it can be easier to build a container than a VM, you

will lose visibility into and control over what’s running

in your infrastructure. This is problematic if you need

to remediate a wide-ranging vulnerability. Some

companies are nervous about investing in managing

the complexity of containers if they believe they’ll

need to train their staff in new tools and processes

in the next year or two. Related concerns are how to

handle changing specifications, backward compatibility

and interoperability.

4. Container management, configuration and

orchestration is complex. Companies may find it

difficult to justify the expense and effort of training

their IT personnel (or of hiring additional staff) to

GEEK GUIDE CONTAINERS 101

13

migrate to containers. The concern is heightened if

management has invested heavily in VM environments,

especially if they have done so recently.

5. Related to the complexity of managing containers is

the concern that management tools have not matured.

In a particular deployment there may be hundreds of

containers, each running a single service. The challenges

of provisioning large numbers of containers running

different services, of scaling sets of containers up or

down, and of managing the interaction among services

can be daunting without really solid and proven

technologies and workflows.

6. Windows is the workstation platform of many developers,

and Docker for Windows was just recently released.

On June 8, 2016, Microsoft announced, “You can

now use Docker natively on Windows 10 with Hyper-V

Containers, to build, ship and run containers utilizing

The challenges of provisioning large numbers
of containers running different services, of
scaling sets of containers up or down, and of
managing the interaction among services can
be daunting without really solid and proven
technologies and workflows.

GEEK GUIDE CONTAINERS 101

14

the Windows Server 2016 Technical Preview 5 Nano

Server container OS image” (https://blogs.windows.com/

windowsexperience/2016/06/08/announcing-windows-

10-insider-preview-build-14361). It will take time for

this offering to prove itself. And, requiring a VM to

run on the Windows Server may hinder its adoption. A

related nascent area is running Windows in a container

(https://msdn.microsoft.com/en-us/virtualization/

windowscontainers/about/about_overview).

What’s Involved in Managing Containers?
Managing containers requires leading-edge skil ls

and tools, beyond an understanding of the container

paradigm. Digital Ocean published an excellent five-

part tutorial series that introduces containers, service

discovery, distributed configuration, networking,

communication, scheduling and orchestration

(https://www.digitalocean.com/community/tutorials/

the-docker-ecosystem-an-introduction-to-common-

components). Although the tutorial is focused on

Docker, it provides a good overview of container

technology for users of any container platform.

Here is a brief summary of the major components

the tutorial introduces:

1. Service discovery and distributed configuration

stores: service discovery helps containers to scale

without human intervention. Discovery assists in

interaction with other containers by finding available

services that your container provides. Distributed

https://blogs.windows.com/windowsexperience/2016/06/08/announcing-windows-10-insider-preview-build-14361
https://blogs.windows.com/windowsexperience/2016/06/08/announcing-windows-10-insider-preview-build-14361
https://blogs.windows.com/windowsexperience/2016/06/08/announcing-windows-10-insider-preview-build-14361
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-introduction-to-common-components
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-introduction-to-common-components
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-introduction-to-common-components

GEEK GUIDE CONTAINERS 101

15

configuration storage makes possible the dynamic

scaling and configuration of containers without

requiring the containers themselves to be dependent

on some static configuration.

2. Networking: containers need to communicate

with one another and with their host servers or

VMs. With the number of containers scaling up and

down, and with the potential for a large number

of containers in an application, robust networking

service is paramount. Secure communication

between application components is another concern.

Additionally, the networking service must handle

subnetting, gateways, MAC addresses and other tasks.

And, of course, the networking tools need to provide

all of those services in a dynamic environment.

3. Scheduling: the scheduler needs to be able to

determine an appropriate host for an application

component and start a container on it. The scheduling

service relies on information in the distributed

configuration stores in making its decisions. The

service needs to handle potential constraints about

whether to run multiple containers on a particular

host, whether to run more than one container on a

given host, whether to start the container on the least

busy host and any other constraints the administrator

places on the application.

4. Cluster management: cluster management is closely

GEEK GUIDE CONTAINERS 101

16

related to scheduling. A particular unit of work

may consist of containers, hosts, services and their

interactions. It may be desirable to abstract away

the management of that workload. Clusters are the

abstraction for the resources and the interactions

that are required to perform that work. Cluster

management tools can operate on those abstractions.

5. Orchestration: orchestration is a broad term that is

often used interchangeably with the terms scheduling

and cluster management. Orchestration also involves

provisioning, which is the process of creating and

configuring a container and starting it so that it may

perform work.

An additional major aspect of working with containers

is configuration management. This involves making sure

that the right versions of OS level as well as application

software and libraries are installed and managed (for

example, for upgrades). I dedicate a later section of this

guide to introducing container configuration management

and some of the complexities that a good set of tools can

help manage.

Who Are Some of the Major Players in
the Container Runtime Space?
If you want to run containers, you have to run them on

a single machine, VM or computer cluster. Note that you

can run containers with just Docker on a single machine.

Swarm and the rest are clustered solutions.

GEEK GUIDE CONTAINERS 101

17

The three offerings shown in Table 2 are a good

starting place for research.

Table 2. Major Players in the Container Runtime Space

Offering Website Description
from Website

Docker Swarm https://docs.docker.com/
swarm/overview

“Docker Swarm is
native clustering for
Docker. It turns a
pool of Docker hosts
into a single, virtual
Docker host.”

Kubernetes http://kubernetes.io “Kubernetes builds
upon 15 years of
experience of running
production workloads
at Google, combined
with best-of-breed
ideas and practices
from the community.”

Mesos http://mesos.apache.org “Native support for
launching containers
with Docker and
AppC images.”

https://docs.docker.com/swarm/overview
https://kubernetes.io
https://mesos.apache.org

GEEK GUIDE CONTAINERS 101

18

Benefits Gained by Switching to
Containers—Case Studies
The Docker website includes several dozen case studies

of benefits enterprises gained when they adopted

containers (https://www.docker.com/customers).

Beyond Docker’s own press, the following is a

sampling of the positive experiences of enterprises

migrating to containers:

n Uber: “While the transition was painful, the end

result was what they had hoped for, getting rid of

their three greatest pain points that stifled continuous

deployment. With Docker, they no longer had to wait

for the infrastructure team to write service scaffolding,

wait for IT to locate services or wait for infrastructure

team to provision services” (http://thenewstack.io/

docker-helped-turbocharge-ubers-deployments).

n eBay: “The adoption of Kubernetes at eBay is not just

about moving to containers to deploy applications,

but changing the application lifecycle at the company,

which is centered around the infrastructure cloud

layer, with provisioning, deploying, monitoring,

and remediating issues being the key functions for

developers and system administrators to perform”

(http://www.nextplatform.com/2015/11/12/inside-ebays-

shift-to-kubernetes-and-containers-atop-openstack).

n Yelp: “[Docker] provides the developers with more of

https://www.docker.com/customers
https://thenewstack.io/docker-helped-turbocharge-ubers-deployments
https://thenewstack.io/docker-helped-turbocharge-ubers-deployments
https://www.nextplatform.com/2015/11/12/inside-ebays-shift-to-kubernetes-and-containers-atop-openstack
https://www.nextplatform.com/2015/11/12/inside-ebays-shift-to-kubernetes-and-containers-atop-openstack
https://www.nextplatform.com/2015/11/12/inside-ebays-shift-to-kubernetes-and-containers-atop-openstack

GEEK GUIDE CONTAINERS 101

19

the ability to do more of the management of the systems

themselves”, Sam Eaton, Yelp Director of Operations

says. “It makes it easier for them to manage and be

responsible for all their own services, without having to

ask for operational help” (http://thenewstack.io/docker-

helped-yelp-leave-monolith-behind).

n ADP: “[ADP] was an early tester of the Docker Datacenter

stack and now has it running across 762 server nodes

on top of its OpenStack cloud and will also be using the

stack to provide a compatibility layer running on the

AWS cloud” (http://www.nextplatform.com/2016/02/23/

docker-trickles-down-from-hyperscale-to-enterprise).

n Goldman Sachs: “When our engineers discovered and

started using Docker’s open source platform, they were

immediately impressed by the portability it provides

applications”, Duet (a 27-year veteran of the firm) said. “It

inspired us to move towards a standardized infrastructure

for packaging, shipping and running our applications based

on Docker’s technology” (http://www.cnbc.com/2015/04/14/

goldman-sachs-invests-95-million-in-docker.html).

How Does Configuration Management
Apply to Containers, and How Does
Puppet Accelerate the Adoption of
Container Technologies?
Configuration management tools provide automation

to handle the complexities of deploying, managing

and upgrading infrastructure software. Sophisticated

https://thenewstack.io/docker-helped-yelp-leave-monolith-behind
https://thenewstack.io/docker-helped-yelp-leave-monolith-behind
https://thenewstack.io/docker-helped-yelp-leave-monolith-behind
https://www.nextplatform.com/2016/02/23/docker-trickles-down-from-hyperscale-to-enterprise
https://www.nextplatform.com/2016/02/23/docker-trickles-down-from-hyperscale-to-enterprise
https://www.cnbc.com/2015/04/14/goldman-sachs-invests-95-million-in-docker.html
https://www.cnbc.com/2015/04/14/goldman-sachs-invests-95-million-in-docker.html

GEEK GUIDE CONTAINERS 101

20

configuration managers allow IT staff to define the

desired state of infrastructure and applications while the

manager enforces that state. By managing an enterprise-

wide configuration from a central place, the administrator

can quickly update applications, system patches, libraries

and other resources. The configuration manager handles

determining which hosts get which updates, relieving

the administrator of the onerous and error-prone task of

managing the details. Configuration managers also enforce

consistency across environments, paving the way for rapid

and continuous software deployment.

Although some dismiss the importance of configuration

management tools in a container environment, claiming that

container management systems often provide configuration

management capabilities and making separate tools

redundant, they miss another view. Luke Kanies, Founder and

CEO of Puppet, one of the leading providers of configuration

management tools, articulates a different perspective

(http://searchitoperations.techtarget.com/news/450296682/

Configuration-management-tools-seek-foothold-in-containers):

[While] virtualization made each individual machine

By managing an enterprise-wide configuration
from a central place, the administrator can
quickly update applications, system patches,
libraries and other resources.

https://searchitoperations.techtarget.com/news/450296682/Configuration-management-tools-seek-foothold-in-containers
https://searchitoperations.techtarget.com/news/450296682/Configuration-management-tools-seek-foothold-in-containers

GEEK GUIDE CONTAINERS 101

21

less necessary and eliminated many of the difficult

problems involving managing physical machines, it also

increased the number of machines under management

about tenfold, Kanies said. Meanwhile, Docker is going

to make everybody’s infrastructure at least another 10

times bigger. Some people argue IT will have as much as

100 times as many containers as it has VMs to manage—

and potentially even more.

So, every application you have just got more complex,

more critical, more confusing and more complicated. You

need way more management, not way less management.

This excerpt from the Puppet web page introducing its

Docker integration lists a number of the many moving parts

to manage in a container environment (https://puppet.com/

product/managed-technology/docker):

Puppet Application Orchestration allows you to model

the relationships between application services—for

example, databases, API servers, and message queues.

Relationships can be modeled between any mix of

containers, microservices, persistent infrastructure,

monoliths, devices, or whatever else makes up your

application’s architecture. With a model to reference,

it’s easier to understand what to re-architect and

where you need to re-architect to incorporate

containers and microservices.

Gareth Rushgrove, senior software engineer at Puppet,

https://puppet.com/product/managed-technology/docker
https://puppet.com/product/managed-technology/docker

GEEK GUIDE CONTAINERS 101

22

makes the case for an even greater need for configuration

management of containers even when there is support

in powerful management tools, such as Google’s

Kubernetes container manager (https://puppet.com/blog/

managing-kubernetes-configuration-puppet):

Some people look at configuration management (and

tools like Puppet) as a way of managing host-bound

resources like files, services, packages, users or groups.

Kubernetes introduces higher-level primitives, like

Pods and Replication Controllers, aimed at making

the management of distributed and scalable systems

drastically easier. The story goes that you no longer need

configuration management with those new primitives.

...

The problems associated with those capabilities are

present with systems like Kubernetes too, and only

partially addressed by current native tooling—problems

like managing configuration drift, having a single

well-audited change control mechanism, having a

model of your infrastructure outside Kubernetes, etc.

This becomes even more important as deployments hit

production, as well as in heterogeneous (read real-

world) environments, where multiple generations of

technology run side by side.

Beyond the complexity of managing the relationship

between application services is the complexity of

working with leading-edge technologies like Docker,

https://puppet.com/blog/managing-kubernetes-configuration-puppet
https://puppet.com/blog/managing-kubernetes-configuration-puppet

GEEK GUIDE CONTAINERS 101

23

Kubernetes and Mesos. Puppet has launched Project

Blueshift (https://puppet.com/product/managed-technology/

blueshift) as the vehicle to facilitate engagement with

Puppet’s user and technology provider communities.

Docker support includes Puppet’s Docker module to install,

configure and manage Docker plus its host and the services

running on that host (https://forge.puppet.com/

puppetlabs/docker_platform/readme). Additionally,

Puppet provides tools, in the form of Docker images, that

allow Puppet to run on hosts that run Linux containers

and on top of container managers. These tools also

facilitate the creation of a local Puppet development

environment (https://puppet.com/blog/puppet-docker-

running-puppet-container-centric-infrastructure). And,

when Docker announced general availability of Docker

Universal Control Plane, a tool to deploy and manage

dockerized applications, Puppet immediately announced

its corresponding docker_ucp module (https://puppet.com/

blog/install-docker-universal-control-plane-puppet).

Puppet can create resources in Google’s Kubernetes

container manager via its Kubernetes module

(https://forge.puppet.com/garethr/kubernetes/readme).

Additionally, Puppet provides tools, in the
form of Docker images, that allow Puppet to
run on hosts that run Linux containers and on
top of container managers.

https://puppet.com/product/managed-technology/blueshift
https://puppet.com/product/managed-technology/blueshift
https://forge.puppet.com/puppetlabs/docker_platform/readme
https://forge.puppet.com/puppetlabs/docker_platform/readme
https://puppet.com/blog/puppet-docker-running-puppet-container-centric-infrastructure
https://puppet.com/blog/puppet-docker-running-puppet-container-centric-infrastructure
https://puppet.com/blog/puppet-docker-running-puppet-container-centric-infrastructure
https://puppet.com/blog/install-docker-universal-control-plane-puppet
https://puppet.com/blog/install-docker-universal-control-plane-puppet
https://forge.puppet.com/garethr/kubernetes/readme

GEEK GUIDE CONTAINERS 101

24

Per Puppet’s announcement, the module:

...allows you to use the Puppet domain specific language

to manage resources in Kubernetes—for instance

Replication Controllers, Services and Pods. This means: (1)

It is easier to manage the state of Kubernetes resources

over time, using source code that can be versioned

alongside your application code. (2) You can be sure of

the state of your Kubernetes infrastructure by taking

advantage of Puppet’s built-in reporting and tools

like PuppetDB. (3) If you’re already using Puppet, the

Kubernetes Puppet module provides a convenient way of

managing Kubernetes alongside your other infrastructure.

And, Puppet users can create higher level

abstractions for Kubernetes (https://puppet.com/blog/

building-your-own-abstractions-for-kubernetes-puppet).

The Puppet community has developed modules for

installing and managing Apache Mesos, open-source

software that allows enterprises to abstract away system

resources in order to build application-centric elastic

distributed systems. Installing Mesos on a compute cluster,

installing several of the most popular Mesos frameworks,

and using Mesos with Puppet are introduced in the “Using

Puppet with Mesos” article (https://puppet.com/blog/

using-puppet-mesos). This article also includes a number

of links to modules and examples.

Project Blueshift also includes modules to work with the

open-source CoreOS Linux distribution, which includes

the rkt container engine, and the project also distributes

https://puppet.com/blog/building-your-own-abstractions-for-kubernetes-puppet
https://puppet.com/blog/building-your-own-abstractions-for-kubernetes-puppet
https://puppet.com/blog/using-puppet-mesos
https://puppet.com/blog/using-puppet-mesos

GEEK GUIDE CONTAINERS 101

25

modules to work with Consul, the open-source tool

for discovering services on networks. As new container

technologies are developed and prove themselves,

Project Blueshift will develop modules, relationships with

providers and community support to accelerate their

integration into the enterprise.

Conclusion
I’d like to close this guide with a second quote from

Gareth Rushgrove, senior software engineer at Puppet.

This statement focuses, at the surface, on Mesos and

Puppet. But, it speaks to the heart of Puppet’s priority

of fostering community. One could argue that Docker is

wildly successful because it combines great technology

with a strong emphasis in community. Puppet is following

this same recipe for success:

This collection of modules for managing Mesos with

Puppet is another great example of the ingenuity of

the Puppet community. Thank you to everyone who has

contributed to these modules and to making Puppet

a useful tool for managing Mesos. All of this is also

a good example of how Puppet is often used to help

people adopt newer technologies, bringing a consistency

and confidence to how new software is installed,

configured and managed. If you have other examples

of great Puppet and Mesos integrations, or if you’re

happily using both together, please do let us know.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Containers 101
	What Is a Container and How Are Containers Used?
	What Are the Values of Containers?
	Who Are the Container Providers?
	Do Companies Need to Leave the VM Structure Entirely, or Can There Be Hybrid Approaches?
	Why Are Some Firms Waiting to Use Containers?
	What's Involved in Managing Containers?
	Who Are Some of the Major Players in the Container Runtime Space?
	Benefits Gained by Switching to Containers—Case Studies
	How Does Configuration Management Apply to Containers, and How Does Puppet Accelerate the Adoption of Container Technologies?
	Conclusion

