

GEEK GUIDE Machine Learning with Python

2

About the Sponsor �� 4

What Is Machine Learning? �� 6

Supervised vs� Unsupervised Learning ������������������������ 11

Models: the Core of Machine Learning ������������������������ 13

Python and scikit-learn �� 15

An Example of Machine Learning ��������������������������������� 17

Validating �� 23

Comparing Models�� 25

Conclusion �� 26

Resources ��� 27

Table of Contents

Reuven M. Lerner offers training in Python, Git and PostgreSQL to companies around the world.
He blogs at blog.lerner.co.il, tweets at @reuvenmlerner and curates DailyTechVideo.com.
Reuven lives in Modi’in, Israel, with his wife and three children.

https://blog.lerner.co.il
https://DailyTechVideo.com

GEEK GUIDE Machine Learning with Python

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE Machine Learning with Python

4

About the Sponsor
Intel® Software and Services Group

The Intel® Software and Services Group (SSG) employs

thousands of software-focused professionals, and

measured by engineering staff size, SSG would be among

the world’s top 10 software companies if it were an

independent organization.

Recognizing that software is tightly coupled with, and

a vital element of, all Intel® platforms and processors, SSG

is a worldwide provider of software products and services,

design resources, technical expertise and consulting. SSG

primarily works with software companies such as Adobe,

Microsoft and Oracle, and directly with CIOs of major

corporations such as DreamWorks and Reuters Financial,

as well as with individual software developers.

Through SSG’s comprehensive enabling efforts, the

software community can take maximum advantage of

Intel® processor technologies across the computing

spectrum from the Intel® AtomTM processor in small form

factor mobile computing to Intel® CoreTM processor and

Intel® Xeon® processor families in computers, servers

and entire IT infrastructures. SSG works with developers

to enhance innovation and gain the best possible

performance, uptime and efficiency. In addition, SSG is

an integral part of the microprocessor design process,

ensuring software requirements are comprehended in the

development of future architectures and silicon designs.

GEEK GUIDE Machine Learning with Python

5

I first heard the term “machine learning” a few years

ago, and to be honest, I basically ignored it that time. I

knew that it was a powerful technique, and I knew that

it was in vogue, but I didn’t know what it really was—

what problems it was designed to solve, how it solved

them and how it related to the other sorts of issues I was

working on in my professional (consulting) life and in my

graduate-school research.

But in the past few years, machine learning has become

a topic that most will avoid at their professional peril.

Despite the scary-sounding name, the ideas behind machine

learning aren’t that difficult to understand. Moreover,

a great deal of open-source software makes it possible

for anyone to use machine learning in their own work or

Machine
Learning
with Python
 REUVEN M. LERNER

GEEK GUIDE Machine Learning with Python

6

research. I don’t think it’s an overstatement to say that

machine learning already is having a huge impact on the

computer industry and on our day-to-day lives.

In this ebook, I introduce the basic ideas behind machine

learning and show how you can use Python to apply

machine learning ideas to a number of different problems.

I hope by the time you finish reading this guide, you’ll not

only understand what machine learning aims to do, but also

how to apply it to your own work and research.

What Is Machine Learning?
Before doing anything else, let’s define the terms:

“machine learning” sounds somewhat ominous, leading

to a Matrix-like world in which the machines have taken

over. But machine learning, at least as our current world

sees it, is a mechanism by which computers can put

inputs into categories.

Wait, that’s it? No, but that’s a very good starting point

for thinking about machine learning.

Human minds basically are pattern-matching machines

Human minds basically are pattern-matching
machines and excel at finding commonalities
among different types of inputs; getting a
computer to perform such categorization
tasks is more than just an impressive trick.

GEEK GUIDE Machine Learning with Python

7

and excel at finding commonalities among different

types of inputs; getting a computer to perform such

categorization tasks is more than just an impressive trick.

It means that computers can look through a large number

of inputs and try to categorize those inputs.

And, of course, if there’s something that computers do

better than people, it’s look through large quantities of data.

A related use of machine learning is to predict outputs

based on inputs with some degree of certainty. So if

I present you with an input value—a child’s age, for

example—then you can predict that child’s height. Will

your prediction be exact? No, but that’s okay; machine

learning uses statistical reasoning. Thus, you’re looking

for likely outcomes, not definite outcomes.

Because this is something that statisticians have been

doing for years, there definitely are people who ask how

machine learning is different from just statistics. One

possible answer is that regression, one of the cornerstones of

statistics, is just one type of model used in machine learning.

For example, let’s say you’re a credit-card company and

you’re trying to determine whether a purchase is legitimate

or fraudulent. Too many false positives, and your customers

will be angry. Too many false negatives, and you’ll soon

be out of business. Machine learning makes it possible to

analyze someone’s purchase history and determine whether

a purchase is likely to be good or bad.

Another common and famous example is that of

identifying e-mail spam. It used to be that spam was

not only obnoxious, but also easy to identify. Today,

spammers use a variety of techniques to make their e-mail

GEEK GUIDE Machine Learning with Python

8

look legitimate. Machine learning allows a computer to

accumulate information over time, getting an increasingly

clear picture of what is considered a legitimate message.

And of course, if you’ve bought anything on-line in

the last decade, you’ve likely been told that “people who

bought this product also bought...”, followed by a long

list of things that, when you think about it, actually are

of interest to you. This sort of categorization also can be

attacked using machine learning. As more information

is fed into the system, it can make increasingly accurate

predictions of what someone is likely to want to buy (or

already has bought from another store).

As you can see, the number and types of problems that

can be solved using machine learning is large and varied.

Consider going back to when Claude Shannon and others

first proposed that people could encode boolean logic in

electrical circuits. Would you have imagined that today

we would be holding powerful computers (mobile phones)

in our pockets, sharing videos and e-mail messages

effortlessly and globally? In the same way, we’re only

at the start of a revolution in machine learning, and it

remains to be seen just how far this will go.

There are, of course, some ways machine learning has

been used with, well, interesting results. Those results

don’t mean the technology is necessarily wrong, but

rather that statistical models provide likelihoods, not

certainties. Uncertainty, matched with a large population,

can create some awkward situations.

One famous, early example involved TiVo, a digital video

recorder that chose what to watch based on your viewing

GEEK GUIDE Machine Learning with Python

9

patterns. A Wall Street Journal article from 2002 was titled

“My TiVo Thinks I’m Gay”, and described someone trying to

convince his TiVo that his choice in television programs was

other than what the box’s algorithms had determined.

Another famous case involved Target, which sent “so

you’re expecting” coupons to a customer based on her

purchasing patterns, which told the machine learning

algorithms that she was pregnant and would appreciate

receiving such discounts. What Target’s computer didn’t

realize was that the customer in question was a teenage

girl who hadn’t told her parents about the pregnancy. The

parents, first irate at Target for making such seemingly unfair

inferences, later directed their anger at their daughter.

The social, ethical and business ramifications of machine

learning have yet to be determined. And yet, we’re

starting to see how large companies and organizations are

using machine learning to sell more, keep people healthy

and make everyone more productive.

Moreover, we’re seeing how our own organizations can

use machine learning to sell more products, understand

customer needs and even improve medical outcomes.

Moreover, we’re seeing how our own
organizations can use machine learning to
sell more products, understand customer
needs and even improve medical outcomes.

GEEK GUIDE Machine Learning with Python

10

Machine learning is a new application of statistical

modeling. For many people, the term “statistical modeling”

might not mean much, despite its demonstrated depth and

power through many decades. But modeling is an important

field, allowing people to describe and understand the

world, or certain features of it. Statistical modeling lets you

use previously collected data to make reasonable inferences

and predictions about future data.

For example, the United States is now in the middle of an

election season. Before every debate, primary and caucus,

numerous polls make predictions about who will win—and

for the most part, they can predict things accurately. But

in some cases, the pollsters say they don’t have enough

information from previous years’ elections to make a

reasonable prediction. Or, they may make predictions despite

a lack of earlier data and end up with egg on their faces.

Because machine learning is based on statistical

modeling, it makes certain assumptions. First and foremost,

it tries to find correlations among data, but doesn’t claim to

find causality. This is a well known statement, and one that

every elementary statistics class attempts to teach—and yet,

human instincts drive us toward seeing causality even when

that’s far from demonstrated.

Machine learning also works, as I wrote earlier, only when

there is some data with which to consider. Is someone a

likely terrorist risk? Is this envelope meant to be delivered

to Main Street or to Maine? Are you really a good potential

customer for a new romance novel? All of those questions

can be solved, to some degree, with machine learning—

assuming that the system has sufficient inputs. Amazon’s

GEEK GUIDE Machine Learning with Python

11

first customer wasn’t recommended any books, because

that functionality didn’t exist. But even if the software had

existed, it wouldn’t have been possible to get a reasonable

recommendation, because there weren’t yet any purchases.

And of course, machine learning is only as good as the

input data. If your input data has a limited number of factors,

or those factors aren’t enough to distinguish between

elements of your data set, machine learning won’t be able

to do much for you. If your data set contains a great deal of

noise, or outliers, then machine learning might not help.

Supervised vs. Unsupervised Learning
I’ve already described machine learning as a way of having a

computer put input data into categories. At the same time,

I indicated that the “learning” part of machine learning

comes from the fact that the system’s model improves with

time, as it gets more (good) input data. However, there’s

still the question of how the computer is supposed to know

how to categorize things.

For example, let’s take a set of people. Say you have a

bunch of information about them, including gender, age,

height, weight and nationality. In most cases, you won’t want

to use all of those factors. The type of categories into which

you want to sort data will drive the factors you use. Thus, if

you want to categorize by driving ability, you’ll use different

factors from expected adult height, which is different from

the number of languages you can expect the person to know.

There are two basic approaches to categorization, and

each has its uses. In supervised learning, you take an

initial data set and categorize each element. These initial

GEEK GUIDE Machine Learning with Python

12

assignments are the “supervised” part of the learning. You

can think of it as analogous to teaching a young child the

letter A. You show many different forms of A, until the child

is able to recognize a variety of shapes and forms of A.

Supervised learning is a good choice when you have

some initial samples and want to categorize additional

samples. For example, some spam filtering systems used

to ask you to feed in good e-mail messages, so they

would have a sense of what was considered non-spam;

this was a form of supervised learning.

In unsupervised learning, by contrast, the computer

is asked to divide the data set into a number of groups

without a training set. You then can know that the data

is divided into several different groups, based on the

factor or factors you have identified.

Unsupervised learning can be used to find correlations

that people ordinarily wouldn’t expect. It can be used to

find potential customers or for the ubiquitous “people

who bought X also bought Y” recommendation systems.

In unsupervised learning, the idea is that the model is able

Unsupervised learning can be used to find
correlations that people ordinarily wouldn’t
expect. It can be used to find potential customers
or for the ubiquitous “people who bought X
also bought Y” recommendation systems.

GEEK GUIDE Machine Learning with Python

13

to crunch through enough distinct and useful data inputs

that it can categorize the data. People need to describe the

categorization that takes place, but the computer can try to

maximize the clustering of the data points.

Models: the Core of Machine Learning
Machine learning, as I’ve already indicated, is a special case

of statistical modeling. In a statistical model, you assume

that members of your population have different values, and

that you can define a function describing a line separating

those values into different groups.

For example, assume that your input data contains

height and age information about two groups of children.

Each child is either between the ages of 2–5 or between

the ages of 15–18. You can imagine plotting the ages and

heights of those children.

With this population, it’s probably fair to say that

given someone’s age, you can predict height. In such

a scenario, you would say that age is the independent

variable, and height is the dependent variable. In

mathematical terms, you could say:

height = f(age)

This function will not predict everyone’s height perfectly

accurately, but it will be fairly close. As a statistical model,

it’ll tell the likely height given someone’s age, within a

certain margin of error. If you have children, you likely took

them as babies for a check-up. At that check-up, your baby’s

height and weight were compared against such a plot to

GEEK GUIDE Machine Learning with Python

14

ensure that he or she was on a reasonable growth path.

You can do something else with this data set as well.

You can define a function that, given a new data point,

can categorize it into either the younger (2–5) group or

the older (15–18) group.

But of course, populations generally aren’t divided into

such clearly distinct categories. If your inputs consisted of

children throughout the age range of 2–18, you still would

be able to make some predictions about their height based

on age. But the line between the younger group and the

older group would be much harder to determine.

Even with this expanded group, you can say that there is

a correlation—that age plays a role in determining height.

You can say that the older the children are, the more likely

they are to be taller. But, there will be some children who

even at age 12 are taller than others at age 18. With such

real-world data, categorizing children into “younger” and

“older” groups based on height becomes more difficult,

with a large number of errors.

In machine learning, you aim to find a model that can

produce an output based on an input—or more often, a

large set of outputs based on a large set of inputs. Different

models, using different techniques and algorithms, will

come up with different measurements.

In the end, all of these models reduce your input data

to numbers or groups of numbers on which the algorithm

can operate. Thus, a spam filter isn’t comparing words;

it’s comparing the result of a function that operates on

words. However, that function might look at each individual

word, combinations of two, three or four words, or even

GEEK GUIDE Machine Learning with Python

15

the combination of all words in an e-mail message, before

deciding whether a message is spam.

Creating and refining these models and adjusting the

parameters used to invoke the model, as well as the way in

which you process the input data, is a key part of machine

learning. Moreover, it’s important to have a way to check

your model’s accuracy. It might seem to do a good job of

categorizing your input data, but is it really that powerful?

Python and scikit-learn
You could, of course, invent all of this yourself. However,

one of the reasons why Python has become such a popular

language among data scientists is the extensive set of

libraries available that have already done so for you.

The Python package for machine learning is known as

scikit-learn. There are also other high-performance machine

learning library alternatives, including H2O and Intel Data

Analytics Acceleration Library, which can offer additional

functionality and performance.

The sckikit-learn package is available for download

from the Python Package Index (PyPI) and can be

installed using the Python pip command-line uti l ity.

scikit-learn depends on a number of other Python

libraries written and optimized for use in mathematics

and science. The most fundamental of those is NumPy,

which implements a “NumPy array” data type (not to

be confused with Python’s built-in “array” data type).

NumPy arrays provide a thin layer of Python on top of a

C implementation. Operations, thus, run quite quickly

and consume far less memory than a standard Python

GEEK GUIDE Machine Learning with Python

16

l ist would require.

On top of NumPy sits SciPy, implementing many

hundreds (or perhaps thousands?) of functions useful to

anyone doing scientific calculations. SciPy’s functions use

NumPy as their underlying data structure.

Note that although standard distributions of Python are

not known for performance, there are vendor-supplied

distributions like the free Intel Distribution for Python and

Continuum Anaconda that can yield dramatic NumPy and

SciPy performance improvements.

SciPy offers the possibility of plugins, known as scikits.

scikit-learn is, thus, a plugin for SciPy that implements a

variety of algorithms to assist in the creation of machine

learning models. Moreover, the API to each of the

implementations is the same, meaning that once you learn

how to use scikit-learn with one type of model, using other

types of models shouldn’t be particularly difficult.

And indeed, one of the more important choices to make

in machine learning is the type of model you want to use.

Note that although standard distributions of
Python are not known for performance, there
are vendor-supplied distributions like the free
Intel Distribution for Python and Continuum
Anaconda that can yield dramatic NumPy
and SciPy performance improvements.

GEEK GUIDE Machine Learning with Python

17

Sometimes, the choice is obvious. But in many cases, you

can choose from different models, either implementing

different algorithms or using the same algorithm with

different parameters. In each case, you’ll want to test your

model to make sure you aren’t fooling yourself into thinking

the model works when it doesn’t.

One common problem with models is that of

“overfitting”. An overfit is when a model does perfectly

describe and classify the test data, but only because the

model is custom-designed to that test data. The moment

the model encounters real-world data, it demonstrates its

brittleness. The model is so tracked to the training data,

it’s incapable of truly learning.

Imagine teaching a child to recognize the letter A, but

only using serif typefaces and making it very clear that

those serifs (the little lines that appear on some letters) are

a crucial part of the identification process. That child won’t

be able to recognize an A in a sans-serif font. Sometimes,

it’s better for a model to be less specific in order to identify

a greater number of potential inputs.

An Example of Machine Learning
Ronald Fisher was a biologist who worked during the first

part of the 20th century. However, he’s best known as the

father of modern statistics. Fisher was trying to understand

genetics and the general behaviors of populations of

biological species, and the tool that he employed—and then

helped to extend—was that of statistics.

One of Fisher’s initial data sets was iris flowers. As with

many flowers, irises come in a variety of species. Fisher

GEEK GUIDE Machine Learning with Python

18

calculated the lengths and widths of two parts of the iris

flower (petals and sepals) and found that using those

measurements, he could determine which species an iris

belonged to with a fair degree of certainty. In 1936, he took

these four measurements from 150 different flowers, 50

from each of three species (setosa, virginica and versicolor).

He then categorized these flowers and showed that based

on this statistical model, you could take a new, previously

unseen iris and correctly categorize it by measuring the

dimensions of its petals and sepals.

This data set is a classic in the sense that it’s old. But

it’s also a classic, and standard, way to introduce people

to the world of machine learning. That’s because the data

set is small, easily understood and demonstrates many

aspects of machine learning.

As you might have guessed, this is a case of supervised

learning: create a model, and feed it not only the data, but

also how to classify that data.

Now, let’s use NumPy and scikit-learn to experiment with

machine learning and see what you can do with this data

set. I’m going to assume that you already have installed

Python on your computer and that it is a recent enough

version to include the pip command-line utility. Execute

this command on the command line to install (or upgrade)

NumPy, SciPy and scikit-learn:

$ sudo pip install -U numpy scipy scikit-learn

Once those have been installed, you can use them. First,

import NumPy using the np alias that is universally used

GEEK GUIDE Machine Learning with Python

19

within the NumPy world:

import numpy as np

scikit-learn comes with a number of sample data sets,

including the “iris” data set described above. You’ll import

the function that can be used to load the data set:

from sklearn.datasets import load_iris

You now can run the function and get the data set:

iris = load_iris()

If you look at the iris variable that you have defined,

you’ll see that it’s an object of type “Bunch”, meaning that

it collects everything you’ll need in order to work with the

data. The iris variable, once defined, has several attributes

you might want to explore: DESCR (a textual description

of the data set), target_names (the categories into which

you can sort flowers), data (a NumPy array containing the

measurements for all 150 flowers) and feature_names (the

names of the features stored in the data attribute).

Combined, this gives you enough information to create a

model and start training it.

In order to create a model with scikit-learn, you’re going to

need to have the features (that is, input data) and response

(output data for training purposes) in separate NumPy arrays.

Because each piece of input data contains several features—

in this case, several flower measurements—and yet is only in

GEEK GUIDE Machine Learning with Python

20

a single category, it makes sense that the response will be a

one-dimensional NumPy array, whose length is the same as the

number of observations.

scikit-learn expects you to put your input data (that is,

features) in a variable called X (yes, uppercase X), a matrix

(that is, multi-dimensional NumPy array). The target (that is,

the classification) will be in a variable called y, a vector.

You can create these from the iris data as follows:

X = iris.data

y = iris.target

You can use the shape attribute to double-check that

they both have the same width, but different lengths:

>>> y.shape

 (150,)

>>> X.shape

 (150, 4)

Now you can start to train your model! But wait...what

model are you going to use? Each model implements an

algorithm—often a statistical function—along with one or

more parameter values. Choosing the right model can make

a huge difference in the types of correlations you’ll find.

A common model is KNN, or “K nearest neighbors”. KNN

assumes that there’s a way to determine the “distance”

between two of your inputs. For example, if you have a

flower with measurements [1,2,3,4] and another flower

GEEK GUIDE Machine Learning with Python

21

with measurements [1,2,5,6], you would have to decide

how “close” these are to one another. In the case of KNN,

the default is to use the Euclidean distance between them.

Given a distance calculation, here’s how KNN works:

n You pick a value for K.

n You then search for the K closest inputs (observations) to

the one you want to categorize.

n You use the most popular response to assign it to K.

In other words, you’re basically saying that if K=3, and a

new input is close to two blues and one red, you’ll say that

the new observation should be categorized as blue.

Now, it’s possible for KNN to come up with tie votes.

It’s also possible to play with the value of K. That’s the

difference between an algorithm and a model; the KNN

algorithm can lead to many different models, each with its

own distance calculation and value of K.

In scikit-learn, you always approach a model in the

same way, with the same four steps. This is a big help

when you want to approach new types of models; the

scikit-learn API is highly standardized and makes it

possible to concentrate on the models rather than how

you work with them. The steps are:

1. Import the class representing your model.

2. Create an instance of this class.

GEEK GUIDE Machine Learning with Python

22

3. Train the model with your data.

4. Predict the response for a new observation.

Let’s go through all four of those steps now, given your

“iris” input data and the KNN model.

1) Import the class: scikit-learn comes with a very

large number of model classes. The KNN model is in

sklearn.neighbors.KNeighborsClassifier. As you learn

more about machine learning, you definitely should

explore the other models it offers:

from sklearn.neighbors import KNeighborsClassifier

2) Create an instance of this class: this is just l ike

creating an instance of any other Python class. Any

arguments you pass to the class when creating an

instance affect the model. In the case of KNN, you

can pass any value you want. Let’s try 3:

knn = KNeighborsClassifier(n_neighbors=3)

3) Train the model with your data: take the X and y values,

set above, and train the model with the “fit” method:

knn.fit(X, y)

Notice that you don’t get a value back. That’s because

the model is learning; you’re feeding it information that

it can use in the future.

GEEK GUIDE Machine Learning with Python

23

4) Predict the response for a new observation: the model

has learned! Now you can ask the model that if you have

a flower with certain measurements, into which category

should it go? For this, you use the “predict” method,

passing it a 1x4 NumPy array containing the same four

features you used in all of your previous observations:

knn.predict([[3,5,4,2]])

You get back the following response:

array([1])

In other words, the model believes the most appropriate

response would be category 1. Or, if you feed that back

into iris.target_names:

iris.target_names[knn.predict([[3,5,4,2]])]

you get back:

array([‘versicolor’],

 dtype=’|S10’)

So, the new flower would most likely be of type “versicolor”.

Validating
Now is when things start to become truly interesting—

and complex.

You’ve trained the model, and it gives out some

GEEK GUIDE Machine Learning with Python

24

responses, but are those responses true? Are they

reasonable? Would you be better off using a different

model? The same algorithm with different parameters?

All of those are possible, and it’s up to you to figure

it out. But how?

Moreover, there’s a big flaw in the example above:

it trained a model and then decided that it was good

enough. But maybe it wasn’t. How can you feed data

back into the model to see?

The last question is a fairly easy one to address. If you

have new data for which you know the classification, then

you can test your model against those. But, what if you

don’t? You can divide your data into parts—and use one

part to train the model and the other part to test it.

This is done using a technique known as train-split-test.

And sure enough, scikit-learn provides a way of doing this:

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

 ➥test_size=0.4)

You’ve trained the model, and it gives out
some responses, but are those responses
true? Are they reasonable? Would you be
better off using a different model? The same
algorithm with different parameters?

GEEK GUIDE Machine Learning with Python

25

Now you have two values for X (one for training and one

for testing) and two values of Y (one for training and one

for testing). By setting a test size of 0.4, you’re saying you

want the test to contain a random 40% of your values.

It’s not uncommon to cross-validate across many different

parts of your input data to ensure that each part of the

input is tested against each part of the output.

Comparing Models
No matter what though, you’ll want to find out whether

your model does a better job than other possibilities.

Indeed, you’ll likely want to try several different models and

compare them against one another.

The sklearn.metrics module contains a large number of

methods that can help you compare the results of running

models. For example, after training several different models

with the same input data, give those different models a

bunch of new observations for which you know the answer.

Get the predicted outcomes, and then compare those

predictions against the known answers.

For example, you could create a KNN model with K=3

and another KNN model with K=5. You then can run the

predict method on each of them:

knn3_predictions = knn3.predict(X)

knn5_predictions = knn5.predict(X)

Since you know the expected outcome for each of these,

you then can compare how the predictions went with the

expected outcome, using the accuracy_score method

GEEK GUIDE Machine Learning with Python

26

within scikit-learn.metrics:

from sklearn import metrics

print(metrics.accuracy_score(actual_y, knn3_predictions))

print(metrics.accuracy_score(actual_y, knn5_predictions))

This accuracy can be done even if you use models that

aren’t using the same algorithm. For example, perhaps

logistic regression might provide you with a better fit

than KNN; you easily can fire that up, train it with the

same inputs and see if it does a better (or worse) job than

the KNN numbers 3 and 5.

By evaluating a number of possible model candidates,

using various algorithms and parameters, you can find

something that truly describes your input data and

allows you to make predictions about new data. You

could argue that by following this process, there is

certainly some machine learning going on—but above

and beyond that, there’s human learning taking place

as well, with people getting a better sense of what to

measure and how to measure it.

Conclusion
Machine learning is a large, complex and deep topic that

is receiving a growing degree of attention—and deservedly

so! Python’s scikit-learn library makes it surprisingly easy

to work with input data and explore that data using

different types of models.

There is a growing business case for the use of machine

learning to identify trends among customers, staff and

GEEK GUIDE Machine Learning with Python

27

operations. By applying machine learning models to your

input data, you can gain insights into what is (and isn’t)

working in your business and where to improve—finding

correlations and similarities among data points that you

might not have expected.

I believe that machine learning has the potential to influence

our lives profoundly. The fact that with some basic statistics

and programming knowledge, you can apply it to your own

work, makes it all the more worthwhile to start to do so.n

Many resources are available to help you learn about data
science in general and machine learning in particular.

The documentation on the scikit-learn site (scikit-learn.org) is
a good place to start, with some tutorials and lots of clearly
written documentation.

If you want a higher-level, broader perspective, Building Machine

Learning Systems with Python, written by Willi Richert and Luis
Pedro Coelho and published by Packt Press, has a lot of good
information, including hands-on tutorials and descriptions of the
different types of models you can (and should) work with.

Another good resource is the site Machine Learning Mastery
(machinelearningmastery.com) by Jason Brownlee. His ebooks are
relatively inexpensive and are packed with useful information about
machine learning. But, even his free materials are of high quality and
can help you understand when and how to use machine learning.

Resources

https://scikit-learn.org
https://machinelearningmastery.com

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Machine Learning with Python
	What Is Machine Learning?
	Supervised vs. Unsupervised Learning
	Models: the Core of Machine Learning
	Python and scikit-learn
	An Example of Machine Learning
	Validating
	Comparing Models
	Conclusion
	Resources

