

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

2

About the Sponsor �� 4

Overview ��� 5

Introduction to SSL/TLS ��� 7

Types of Certificates ��� 10

Certificate Authorities �� 13

Getting Ready for SSL/TLS ��� 15

Installing the Certificate ��� 19

Conclusion �� 24

Resources ��� 25

Table of Contents

REUVEN M. LERNER is a Web developer, consultant, trainer and longtime columnist
for Linux Journal. He recently completed his PhD in Learning Sciences from Northwestern
University. You can read his blog, Twitter feed and newsletter at http://lerner.co.il.
Reuven lives with his wife and three children in Modi’in, Israel.

https://lerner.co.il

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

4

About the Sponsor
GeoTrust—A Trusted Leader in Online Security Services

GeoTrust is the world’s second largest digital certificate provider.

More than 100,000 customers in over 170 countries trust GeoTrust

to secure their websites and online transactions. Our range of

digital certificates enable organizations of all sizes to maximize the

security of their websites and digital transactions cost-effectively.

GeoTrust’s uncompromised world-class SSL Certificates

(https://www.geotrust.com/ssl/) offer fast delivery at a

cost-effective price, enabling up to 256-bit SSL encryption,

and include the GeoTrust Secured Seal, which is generated in

real time by GeoTrust servers to show customers that the site

is currently protected.

The GeoTrust Security Center, a robust management portal,

makes the task of managing these certificates intuitive and simple.

GeoTrust also offers volume pricing for Enterprise SSL customers

that need 10 or more certificates (https://www.geotrust.com/

enterprise-ssl-certificates/enterprise-ssl).

https://www.geotrust.com/ssl/
https://www.geotrust.com/enterprise-ssl-certificates/enterprise-ssl

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

5

Overview
Congratulations! You’ve decided to set up a Web site.

The site might be for your personal use, for sharing family

pictures, for a blog, for an SaaS application, or any number

of other possibilities. In all of those cases, people will access

your site using the Hypertext Transfer Protocol (HTTP). HTTP

has evolved and improved through the years, but one thing

about it hasn’t changed—the fact that all of the traffic sent

Apache
Web Servers
and SSL
Authentication
 REUVEN M. LERNER

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

6

on an HTTP connection is unencrypted.

If you’re running a personal site, this doesn’t really

matter. But if and when you’re interested in doing

something a bit more exciting, you might well want or need

to add encryption to your server. Encrypted HTTP is known

as HTTPS, and it involves the addition of SSL/TLS encryption

to the HTTP protocol. In order for your site to handle

encrypted connections, you need to install and configure an

SSL certificate. This Geek Guide is here to help you through

that process, making it easy for you to move an existing site

using HTTP into one using HTTPS.

There are several motivations for using HTTPS, rather than

HTTP, on Web sites. One is that a growing number of sites

are engaging in commerce, and many payment providers

(and their security standards, known as PCI) are requiring

that commercial sites not only encrypt traffic having to do

with payments, but also with logins and other aspects.

In some cases, sites are either required to keep

information as private as possible, or they wish to do so

in order to avoid regulatory problems. Medical and legal

offices, for example, would want to avoid having others

eavesdrop on discussions employees are having and e-mail

messages they are sending and receiving. Without a secure

channel, it might be possible for someone to listen in,

without actually gaining access to the network.

Some users may be more likely to trust a site that is

encrypting traffic. Thus, some sites use HTTPS not because

they need to do so, but because they know users might feel

more comfortable with an HTTPS connection in place.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

7

Finally, some people say that given how inexpensive

and easy it is to use SSL, and to use an encrypted version

of HTTP, that they might as well do so. Gone are the

days when running an HTTPS server was difficult,

time-consuming or too CPU-intensive for a server;

today’s computers are more than powerful enough to

handle HTTPS traffic.

The bottom line is that whether you want or need to do

so, adding HTTPS to a site you’re running isn’t very hard

to do. In this Geek Guide, I walk through what SSL/TLS is

(and isn’t), how you can create or buy a certificate, how

to install that certificate into an Apache server and then

how to configure Apache such that a subset of URLs on

your system are covered by SSL.

Introduction to SSL/TLS
First, it’s important to understand some terminology and

technology. HTTPS differs from plain-old HTTP in that it is

“secure”. However, people often are surprised to discover

that this means the connection between the users’ browsers

Gone are the days when running an HTTPS
server was difficult, time-consuming or
too CPU-intensive for a server; today’s
computers are more than powerful enough
to handle HTTPS traffic.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

8

and the server is secure. It doesn’t guarantee anything

about the security of the server or of their data. All that

HTTPS ensures is that if you’re using a café’s Wi-Fi to

purchase something on Amazon, no one will be able

to read your user name and password as they are sent to

Amazon’s login system.

The security in HTTPS uses a protocol known as transport

layer security, or TLS for short. The current stable version of

TLS is 1.2, with version 1.3 currently in draft form. Although

TLS has been around since 1999, and replaced the earlier

SSL (secure socket layer) protocol invented by Netscape,

many people continue to refer to the protocol as SSL, even

though currently no version of SSL is considered to be

secure. Thus, when people mention an SSL certificate, they

almost certainly actually are referring to a TLS certificate.

The naming difference, it would seem, had little to do with

substantial changes to the protocols and was more political

than technical in nature.

It doesn’t help that the best-known open-source

l ibrary for working with TLS is sti l l known as OpenSSL.

You can read more about the OpenSSL l ibrary at its Web

site: http://openssl.org.

TLS (and SSL) use public-key cryptography to ensure that

communication between a user’s browser and a Web server

is kept secure. In public-key cryptography, each party has

two keys, one public and one private. The public key (as its

name implies) can be shared freely with the world, while

the private key (as its name implies) must be kept secret.

The two keys are inverses of each other, allowing you to use

https://openssl.org

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

9

them in two different ways. You can encrypt text and ensure

that only a specific person can read it, using that person’s

public key. Only by using the private key can the user then

decrypt the information. You also can use the keys to sign

documents digitally. Encrypt a document using your private

key, and everyone can decrypt the document, but they also

will know that you, and only you, could have signed it.

You can imagine, given this description, that you can

use these keys to ensure that traffic between a browser

and server are encrypted and, thus, unreadable to anyone

without the appropriate keys. A site could, in theory,

distribute its public key to anyone and everyone. A browser

then could use the public key to encrypt HTTP traffic. Only

the site would be able to read that traffic, because only it

would have the private key.

However, things in the TLS world are a bit more complex

than that. For starters, remember that you need to have

bidirectional encryption, handling not only requests sent to

the server, but also responses sent to the browser. Add to

that fact the logistical aspect of distributing a server’s public

keys in order for a browser to connect with HTTPS. And

then you also have the issue of ensuring that the key you

receive is a genuine one, and not the result of a “man in

the middle” attack.

The bidirectional part of TLS is perhaps easiest to explain:

the actual public and private keys aren’t directly used to

encrypt the traffic. Rather, they’re used to create a “session

key” (that is, an encryption key that is used for a single

client-server session), and to exchange it securely.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

10

Distributing the server’s keys in a reasonable way is

a bit trickier. After all, if I go to a server, how does my

browser know if the server’s public key (distributed in

a document known as a “certificate”, along with some

other data) is genuine or the result of someone having

broken into the server?

The answer is that the server’s public key is digitally

signed, as described above, not by the server itself, but

from an organization known as a certificate authority, or

CA. Your browser comes preconfigured with the public

keys of a large number of CAs. Thus, when a server sends

its public key signed by a well known CA, your browser

can guarantee the truth of the signature and then use the

server’s public key as part of its creation of a shared session

key between the browser and server.

Making your Web site secure is thus a matter of creating

a set of certificates (public and private) for your server,

signed by a well known CA. This Geek Guide walks through

the process of doing just that.

Types of Certificates
A certificate contains not only the server’s key, but also

some information about the server to ensure that the

key is legitimate. For example, if I create a certificate

Distributing the server’s keys in a reasonable
way is a bit trickier.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

11

for XYZ Corp., I cannot use it on a server run by JKL

Corp. The certificate is issued for a particular hostname,

providing an even greater degree of security and trust.

If you’re going to be securing a single site on a single

domain, you probably can get this simplest type of TLS

certificate. When you create the certificate, you must

describe the location, the organization and the full

hostname of the server in question. Note that the certificate

is based on the hostname and not on the IP address; this

means if you move your server to a new location (but

keep the same name), you likely won’t need to change the

certificate, so long as the hostname remains the same.

However, a growing number of sites cannot use such

simple, single-hostname certificates. The simplest example

of such a case is a Web site with multiple hostnames,

such as “example.com” and “www.example.com”. In such

a case, you would have to purchase and configure two

separate certificates, one for each hostname. Alternatively,

you could buy and configure what’s known as a wildcard

certificate, which allows you to use a single certificate with

a number of hosts within a particular domain. The more

hosts you want to secure under a specific domain, the more

a wildcard certificate will save you time and money.

It’s important to understand that wildcard certificates

are good only for a single domain. Thus, if your company

runs three different on-line stores, each of which with its

own domain, you will need to purchase three separate

certificates. You cannot use a wildcard in that case. In such

a situation, you’ll need to indicate the domain (but not the

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

12

hostnames) that should be associated with the certificate at

purchase time. The hostname cannot be changed once the

certificate is issued, which means if you aren’t completely

sure about your domain name, it might be wise to wait a bit

before making the purchase.

If you are running three (or more) domains on your server,

and particularly if you think you might need to add more

domains to the same server, you should consider a unified

communications certificate, otherwise known as a UCC.

The name might sound complex, but it isn’t. The basic idea

behind a UCC is that you can add and remove domains from

the certificate during its lifetime. You don’t need to know

the domain names when the certificate is created; you can,

after the certificate has been issued, modify and re-issue it

with the latest hostnames. Each change to the certificate

requires re-installing it on your server, but as you’ll see,

the installation process is quite straightforward and easy.

Each alternative domain name on a certificate is known as a

subject alternative name (SAN), and the number of SANs is

the main hard-coded limit on a UCC.

If you are running three (or more) domains on
your server, and particularly if you think you might
need to add more domains to the same server,
you should consider a unified communications
certificate, otherwise known as a UCC.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

13

For example, one of my clients needed a TLS certificate

for a site. However, the site used two different domain

names, and we knew when we ordered the certificate

that we would be adding about ten additional domains

within a year—with an eye toward about 60 total. So,

we bought a UCC that allowed for up to 100 SANs.

Every time we registered a new domain name for the

site, we would re-generate the certificate to include the

new name, and then install this new version. However,

the UCC allowed us to add and remove SANs without

incurring additional costs or the administrative overhead

of working with many different certificates.

Certificate Authorities
Once you have decided what kind of certificate you want

to install, you need to consider the certificate authority

(CA) you want to use. At the end of the day, a CA is

there to guarantee that the certificates it issues are

valid, and that the information the certificates contain

hasn’t been tampered with. As a result, you want to

choose a CA whose certificates have been installed in a

large number of browsers. As a general rule, nearly any

CA vendor wil l be recognized by your browser, but if

you’re going to purchase from a smaller operation, it’s

probably best to be sure, just in case. It’s true that the

CA’s name is mentioned in the SSL certificate. Thus, if

you go to a Web site and click on the HTTPS logo, you

should be given an option to see the name of the CA

that authorized the certificate.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

14

If you use a certificate whose CA isn’t recognized

by all browsers, some users wil l be presented with a

(rather scary) warning, tell ing them not to trust this

site’s certificate. In most cases, I have found that such

warnings are because of innocent misconfiguration

of the server. However, I can almost guarantee that

your users wil l not accept a certificate that produces

such warnings.

However, there are cases in which you don’t want or

need to get a certificate from a CA. For example, if you

just want to set up SSL for an experiment or for your

own development machine, you almost certainly don’t

want to pay money just to get a certificate issued. In

such cases, you can self-sign your certificate.

I should stress that there is no technical barrier to

always self-signing certificates. You could, in theory,

create a multi-bil l ion dollar e-commerce empire

using only self-signed certificates. However, the odds

of being able to do this are sl im, because so many

modern browsers wil l warn users—often with bold, red

warnings that are quite scary to the uninitiated—that

If you use a certificate whose CA isn’t
recognized by all browsers, some users will
be presented with a (rather scary) warning,
telling them not to trust this site’s certificate.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

15

they are visit ing a site whose certificate is signed by a

CA unknown to the browser. Might the TLS certificate

be legitimate? Yes, but there’s no way to know that

for sure, because the browser doesn’t have any way to

validate the digital signature on the server’s certificate.

So although it’s easy and fast to self-sign a certificate,

you should do so only when you are sure that the

general public won’t be relying on that certificate for

anything that directly affects your business.

Getting Ready for SSL/TLS
This Geek Guide describes how to install an SSL

certificate on your Apache HTTP server. Of course, other

HTTP servers exist. In the past few years, nginx has

become particularly powerful. Apache is not only popular,

but it’s also quite flexible. Indeed, its claim to fame is

that Apache is based on a large number of modules,

any of which can be included or excluded in your server

configuration. This not only allows you to create what’s

effectively a custom HTTP server for your purposes, but it

also (if you’re interested in doing so) offers the option of

writing your own custom modules.

The Apache module that handles SSL/TLS is known

as mod_ssl and is included in the basic Apache

configuration. In order to have a secure server, not only

must you have mod_ssl installed, but it also must be

activated. On many modern Linux distributions, such

as Ubuntu, the Apache configuration directory has a

mods-available subdirectory, as well as a mods-installed

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

16

subdirectory. Typically, modules are placed inside

mods-available; if you actually want to use a module,

you create a symlink from mods-installed back to

mods-available. On one of my Apache servers, I have

about 30 modules in mods-available, but only about

15 l inks back to them in mods-installed.

Install ing a module means adding two symlinks:

one to a .conf configuration fi le containing the

modules’ configuration, as well as a .load fi le,

which typically contains a single Apache LoadModule

directive, tell ing Apache where the compiled module

is located.

Now, you could create these symlinks yourself. But as

a general rule, it’s easier to let Apache take care of this

for you, using the alias a2enmod command that comes

with many modern Debian-based Linux distros. Thus, to

enable the mod_ssl module on Ubuntu or Debian, you

simply can run:

$ sudo e2enmod ssl

Now that the SSL module is instal led, you’l l need

to order or create an SSL cert if icate. I ’m going to

assume here that you’l l be going to your favorite CA

and ordering a cert if icate. However, before you take

out your wal let and go to the CAs Web site, you’l l f i rst

need to do some work on your server. That’s because a

CA can create a cert if icate only if i t f i rst has received

a “cert if icate s igning request”, known as a CSR. Funny

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

17

as it might sound, this basical ly means creating a

cert if icate (the CSR) that you give to the CA. The

CA uses the CSR to create your SSL cert if icate. You

then download the actual cert if icate and instal l i t

on your server.

Given that the entire TLS infrastructure is based on

public and private keys, it won’t surprise you to hear

that you’l l need to generate a pair of keys and then

use those keys to create your CSR. You’ll do this using

the openssl command, which comes with the OpenSSL

l ibrary. If you don’t see the openssl command on your

computer, you’l l need to install OpenSSL from your

distribution’s archive.

If this is the first time you’re dealing with any of this,

you’l l need to generate a new keypair, as well as the

CSR itself. Here is the (admittedly long) command you’ll

need to run in order to get this to work:

$ sudo openssl req -new -newkey rsa:2048

 ➥-nodes -keyout key.pem -out req.pem

Given that the entire TLS infrastructure is
based on public and private keys, it won’t
surprise you to hear that you’ll need to
generate a pair of keys and then use those
keys to create your CSR.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

18

Let’s take apart the above command:

n openssl req -new tells the OpenSSL command that

you’re creating a new CSR.

n The -newkey option indicates that you want to generate

a new keypair, rather than use an existing one.

n The rsa:2048 tells the “newkey” option that you want

to generate a 2,048-bit RSA keypair.

n The -nodes option indicates that you don’t want to

encrypt the private key with a passphrase. On the one

hand, this is indeed less secure and means that someone

can restart your Apache server without knowing the

passphrase. On the other hand, do you want to have to

enter the passphrase every time you restart your server?

More security-minded folks than myself, or people

with staff members on duty 24/7 who can take care of

restarting servers, might want to remove this option.

n The -keyout key.pem option tells OpenSSL where it

should store the newly created private key. The output is

in PEM format, which is frequently used with OpenSSL,

which explains the file extension. You can use whatever

filename you want, of course.

n Finally, “-out req.pem” tells OpenSSL where it should

store the CSR that it creates.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

19

Once you run the above command, you’l l be prompted

to enter a bunch of details about your server—where

it’s located, the company name and your name and

e-mail address.

At the end of this process, OpenSSL will create the two

files that you requested: key.pem and req.pem.

At this point, you have a CSR. You can use it to request

a TLS certificate from your favorite CA, or you can use it to

self-sign a TLS certificate created on your own machine. If

you use a commercial CA, you’ll submit the CSR and then

you’ll probably have to wait a bit for it to be processed

and approved, and for you to get the certificate. You’ll

likely receive e-mail from your CA, telling you that the

certificate is now available for download.

Installing the Certificate
Although people might make a big deal out of TLS

certificates, the fact is that they’re just files—digitally

signed files maybe, but files nonetheless. Thus, when

you download the certificate from your CA’s Web site,

you’ll have a file that you then must put on your server.

Actually, you’ll likely have to put three files on your

server, one of which you already have:

n The key.pem file, containing the private key from your

server’s keypair.

n The TLS certificate that you received from your CA,

which likely will have a .crt extension.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

20

n The “Chain file” from your CA, which is used as part of

the identification process with your CA. This also likely

will have a .crt extension.

On Debian-based systems, these files typically are placed

in /etc/apache2/ssl. I generally put the private key (that is,

the key.pem file) under the “private” subdirectory and the

.crt files in the “certs” subdirectory.

You now have installed your certificate! Moreover, you have

all of the pieces you need in order for it to work. But, you still

haven’t told Apache to activate SSL or to use your certificates.

In order to do that, you’ll need to return to your Apache

configuration. Whereas HTTP typically uses port 80, HTTPS

generally uses port 443. Thus, you’ll probably want to set

up a separate virtual host on port 443, in which you’ll set

up your HTTPS configuration. The config can be as simple

as the following:

<VirtualHost *:443>

 ServerName mydomain.com

 DocumentRoot /var/www/www.mydomain.com/

 SSLEngine on

 SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

 SSLCertificateFile /etc/apache2/ssl/certs/mydomain.com.crt

 SSLCertificateKeyFile /etc/apache2/ssl/private/mydomain.key

 SSLCertificateChainFile /etc/apache2/ssl/certs/myca.crt

</VirtualHost>

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

21

The above configuration would be for the server at

MyDomain.com; it’s probably safe to assume that you’re

working on a server at a different domain. The file starts

by opening a <VirtualHost> section, indicating to Apache

that you want to configure this virtual host for requests

to mydomain.com on port 443. Note that if you don’t set

ServerName, you will get errors from Apache.

If you have successfully added the ssl module to

your Apache configuration, as described above, the

SSL* configuration directives should be available and

should work. Using the directives without install ing

the module (and then restarting Apache) wil l result in

error messages, indicating that you are trying to use

undefined directives.

The above configuration uses a number of different

SSL-related directives and options:

n SSLEngine on, as you can imagine, turns on the

SSL system. SSL can be a heavy burden on some

servers (although not nearly as much as it used to

be), and including the module isn’t enough to get

SSL features working.

n As is the case with many Apache modules, mod_ssl

offers a number of options. In the above configuration,

I have activated three: FakeBasicAuth (which allows

you to use standard Apache authentication for user

access), ExportCertData (which passes along several

environment variables having to do with SSL to the Web

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

22

application) and StrictRequire (which allows you to

force SSL on particular pages).

You then tell mod_ssl where it can find the three files it

needs in order to run SSL successfully:

n SSLCertificateFile points to the certificate that you

received from your CA.

n SSLCertificateKeyFile points to the private key that

you generated earlier with the openssl command.

n SSLCertificateChainFile points to a certificate that

you should have received from your CA.

With all of the above in place, you should be able to

restart your Apache server! Then, assuming that your site is

at MyDomain.com, you can go to https://MyDomain.com/.

If all is configured correctly, then this should answer.

However, now you have a bit of an issue—your site likely

is responding on both HTTP and HTTPS, and might well

be configured differently. It’s common to want to redirect

traffic from your HTTP site to your HTTPS site. In other

It’s common to want to redirect traffic from
your HTTP site to your HTTPS site.

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

23

words, if I go to http://MyDomain.com/, the site should

redirect me to https://MyDomain.com/. One simple way

to do that is to use the Redirect directive to map an old

URL to a new one. For example, on your HTTP (non-TLS)

site, you could say:

Redirect permanent / https://MyDomain.com/

This wil l work only for your home page; if you have a

large number of URLs that you want to redirect, it’s not

sufficient. In such a case, you might well need to use

mod_rewrite, which comes with Apache and allows

you to use regular expressions to grab parts of URLs

and redirect people to there. The advantage of the

Redirect directive is that it’s simple to create, and it

al lows you to pick and choose the URLs that wil l be

redirected to HTTPS.

One of the issues that often surprises people when

working with SSL is that it’s a bit harder to debug than

regular HTTP communication, because everything is

encrypted. One of my favorite techniques to see if a

site is working is to telnet to port 80 and issue a

GET / HTTP/1.0 command by hand. Of course, there’s

no way to do that with HTTPS! Instead, you might

well need to use curl, wget or even your browser to

make requests to your server, and then turn up the

logging level on Apache to make sure that everything

you’re doing is logged and can be analyzed. You also

can set, in your Apache configuration (on my system,

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

24

in mods-available/ssl.conf), the debugging of SSL to a

higher level:

<IfModule mod_ssl.c>

 ErrorLog /var/log/apache2/ssl_engine.log

 LogLevel debug

</IfModule>

This will ensure that whatever happens in mod_ssl is

logged, and thus can be debugged more easily. Note that the

“debug” log level is rather verbose; you likely will have to

wade through a fair amount of text to find what you want.

However, that’s better than not being able to find anything

useful, which is what the “info” level often ends up doing.

Another problem that people sometimes have is a

mismatch between the server name and the name on

the certificate. When you create the CSR, you must

use the right hostname. You can’t just move it around

willy-nilly. And, if you change the name of your server or

your domain, the SSL certificate no longer will be valid.

Conclusion
SSL (and TLS) used to be big and complex, and difficult for

people to install. Today, making your site secure is often a

necessary part of doing business—either because you must

do it or because you want your customers to trust you. If you

use Apache and Linux, configuring your server to use TLS

isn’t that difficult. The tools are fairly easy to understand and

use, and they come with every installation of Apache.n

GEEK GUIDE APACHE WEB SERVERS AND SSL AUTHENTICATION

25

Perhaps the best guide to Apache and SSL is, not surprisingly,

the documentation on Apache’s own site. The main page on the

subject is at https://httpd.apache.org/docs/2.2/ssl.

If you’re looking for the specific SSL-related directives, you will

need the mod_ssl documentation: https://httpd.apache.org/

docs/2.2/mod/mod_ssl.html.

Resources

https://httpd.apache.org/docs/2.2/ssl
https://httpd.apache.org/docs/2.2/mod/mod_ssl.html

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Apache Web Servers and SSL Authentication
	Overview
	Introduction to SSL/TLS
	Types of Certificates
	Certificate Authorities
	Getting Ready for SSL/TLS
	Installing the Certificate
	Conclusion

	Resources

