

GEEK GUIDE THE DEVOPS TOOLBOX

2

Introduction �� 5
Process and Documentation �� 6
	 Process	��� 6

	 Documentation	�� 7

Source Control �� 8
	 What	Is	Source	Control,	and	Why	Use	It?	��� 8

	 Code	Review	Processes	��� 9

	 Source	Control	Systems	��� 10

Configuration Management �� 11
	 Introduction	to	Configuration	Management	�� 11

	 Configuration	Management	Systems	�� 13

Monitoring and Instrumentation ������������������������������������� 14
	 Part	Alarm	Clock,	Part	Intrument	Panel—Your	Monitoring	System	����������� 14

	 Monitoring	Packages	�� 16

Sandboxes �� 19
	 Desktop	Virtualization	��� 19

	 Rapid	Prototype/Deployment	Technologies	�� 19

Conclusion �� 20
Resources ��� 21

Table of Contents

BILL CHILDERS is the Senior Development Operations Manager for a mobile
device management company. Bill has worked in IT and DevOps since before the
DevOps term was coined, and he has performed a variety of roles in software organizations:
systems administrator, technical support engineer, lab manager, IT Manager and Director
of Operations. He is the co-author of Ubuntu Hacks (O’Reilly and Associates, 2006), and
he has been Virtual Editor of Linux Journal since 2009. He has spoken at conferences,
such as Penguicon and LinuxWorld, and is enthusiastic about DevOps, IT and open source.
He blogs at http://wildbill.nulldevice.net and can be found on Twitter at @wildbill.

https://wildbill.nulldevice.net

GEEK GUIDE THE DEVOPS TOOLBOX

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE THE DEVOPS TOOLBOX

4

About the Sponsor
The IBM Solution to Enable DevOps

IBM provides a total end-to-end DevOps solution including an

open-standards-based platform that supports a continuous

innovation, feedback and improvement lifecycle, enabling a

business to plan, track, manage and automate all aspects of

continuously delivering business ideas. At the same time, the

business is able to manage both existing and new workloads in

enterprise-class systems, and open the door to innovation with

cloud and mobile solutions. This capability includes an iterative

set of quality checks and verification phases that each product or

piece of application code must pass before release to customers.

The IBM solution provides a continuous feedback loop for

all aspects of the delivery process (e.g., customer experience

and sentiments, quality metrics, service level agreements and

environment data) and enables continuous testing of ideas and

capabilities with end users in a customer-facing environment.

The IBM DevOps solution consists of an open-standards-based

platform that leverages hybrid cloud technologies, with end-to-end

lifecycle capabilities and a set of services to enable organizations

to improve their software delivery capabilities.

Visit http://ibm.com/devops.

https://ibm.com/devops

GEEK GUIDE THE DEVOPS TOOLBOX

5

Introduction
When I was growing up, my father always said, “Work

smarter, not harder.” Now that I’m an adult, I’ve found that

to be a core concept in my career as a DevOps engineer

and manager. In order to work smarter, you’ve got to have

good tools and technology in your corner doing a lot of

the repetitive work, so you and your team can handle any

exceptions that occur. More important, your tools need to

The DevOps
Toolbox
 Tools and Technologies
 for Scale and Reliability

 BILL CHILDERS
 Senior Development Operations Manager
 and Virtual Editor of Linux Journal

GEEK GUIDE THE DEVOPS TOOLBOX

6

have the ability to evolve and grow over time according to

the changing needs of your business and organization.

In this eBook, I discuss a few of the most important tools

in the DevOps toolbox, the benefits of using them and some

examples of each tool. It’s important not to consider this a

review of each tool, but rather a guide to foster thinking

about what’s appropriate for your own organization’s needs.

Process and Documentation
Let me begin by discussing two things that are easy to

overlook when talking about the DevOps toolbox: process

and documentation. These two items are more about how

an organization does its business, rather than what it uses

to get that business done. As such, they can be thought of

as check boxes on some manager’s list, rather than tools

that can help a DevOps organization on a daily basis. Once

you think of process and documentation as tools to be

wielded rather than simple prerequisites that may be forced

upon you, you can start to use those tools to aid you and

your team.

Process: Process can mean many things, but when

distilled down to its basics, process is nothing more than

a list of steps that an engineer or other team member

can follow to ensure a consistent and successful outcome

for any desired task. In the same way a DevOps engineer

will write a script to automate a particular task, a

process should act as a script for people. I like to refer to

developing a process as “scripting in meatspace” for this

reason. Whatever you do, make sure that your process is

just enough for the task at hand.

GEEK GUIDE THE DEVOPS TOOLBOX

7

The word “process” can make a lot of engineers twitch,

and it’s usually because those engineers have been forced

into whatever process their organization has. When faced

with a situation like this, a more effective approach can

be to engage those engineers and make them part of the

process creation and implementation work. Often, the

people inside the process have the best insight and ideas as

to how to streamline and optimize the workflow. Eventually,

those engineers will become the biggest proponents of

whatever process your team institutes, because they’ve

helped invent it. A great side benefit of this is your process

can become a living thing, continually evolving along with

the growing and changing needs of your business. Process

exists to assist your personnel. It’s simply a tool to be

utilized, like anything else.

Documentation: Documentation goes hand in hand

along with process—without one, the other is almost

useless. All the process in the world is difficult to follow

without solid documentation, and documentation doesn’t

work if you have no process to back it up. In addition,

documentation isn’t something engineers have fun doing,

so it is always last on the list to be delivered, if it’s

delivered at all.

Like process, the key to effective documentation isn’t

making it fancy, it’s making it functional. It doesn’t

matter if the documentation has full screenshots and a

table of contents. It doesn’t matter if it’s just comments

in the source code or a bunch of notes on a wiki. If it’s

functional and meets the needs of your organization,

then it’s adequate to the task. The trick to documentation

GEEK GUIDE THE DEVOPS TOOLBOX

8

is making sure it gets done. One way to ensure this is

to implement a rule that a task isn’t completed until

it’s documented.

Source Control
What Is Source Control, and Why Use It? Source control

management (SCM) systems long have been tools used by

programmers, but only recently have they been used by

system administrators or DevOps personnel. Why should

you use source control? Well, if you write scripts or other

tools for internal use, they should be under source control,

just like anything else your company develops. The benefits

of source control are well documented elsewhere (see the

Resources section), but here are a few key advantages

source control provides to DevOps teams:

n Centralized storage of code.

n Allows for ease of auditing and backup.

n Enables easy rollback of changes should the need arise.

That last point is very interesting in a DevOps application.

It’s one thing to check scripts and code in to a source control

system, but what if you check in your system configurations

as well? Now you’ve got a great way to implement change

control and have a built-in way to roll back any configuration

changes if a change goes bad. When coupled with a

configuration management system (more on that topic later),

source control systems become extremely powerful.

GEEK GUIDE THE DEVOPS TOOLBOX

9

Code Review Processes: Code review is a great process

to implement alongside source control. Code review is simple

in concept: have another person check your work before it

makes it into the main code repository and gets pushed to

production. This process can be something as simple and

informal as dropping an e-mail message with a code diff to

another team member. It could be as involved as creating a

branch in the source tree and filing a pull request against the

branch, if you use the GitHub-style model. Whichever process

you adopt, make sure it suits your holistic workflow and that

your engineers support it. Your team’s accuracy will improve,

mistakes will drop, and uptime metrics will follow suit.

FIGURE 1. Git Branching Visualization

GEEK GUIDE THE DEVOPS TOOLBOX

10

Source Control Systems: Source control isn’t a new

concept, and there are many possible options from which

to choose. The odds are that your organization has one in

place, so avoid re-inventing the wheel and try to leverage

what your company already has. However, sometimes that

doesn’t work, so here’s a list of some tools that are in wide

use by DevOps organizations:

n Git: whether you’re using Git on a server in-house or

a hosted Git solution like GitHub or BitBucket, Git is a

very powerful tool. It was designed by Linus Torvalds

(the creator of Linux) to meet his particular needs, so

it has a few design choices that cause it to stand apart

from other SCMs. Git is open source and free to use, and

it’s a distributed SCM—it doesn’t require a server to be

functional. Atlassian, the makers of Bitbucket, also have

a hosted product called Stash that provides Bitbucket’s

functionality on your own hardware, behind your firewall.

n Perforce: this is one of the more powerful SCMs out

there, and it scales extremely well. If you work for a large

company, there’s a strong possibility Perforce is deployed

internally. Perforce is free (as in beer) for use in open-

source projects, but it’s commercial software otherwise.

Perforce is a centralized SCM and requires a server for use.

n Subversion: originally Subversion was founded by

CollabNet, but it’s now under the care of the Apache

Foundation. Among open-source projects, Git largely

has replaced Subversion, but it’s still in fairly wide use.

GEEK GUIDE THE DEVOPS TOOLBOX

11

Subversion is open source and free to use, although it is

a centralized SCM and relies on a server to be functional.

n Mercurial: a distributed, open-source SCM that is mainly

implemented in Python. It’s got a lot of design features that

make it easy for Subversion users to migrate to it, but it is

unique in that it can handle both plain text and binary files.

Atlassian’s Bitbucket service can host Mercurial repositories

for you, if you want to use a hosted Mercurial solution.

One warning: if you do decide to start checking

configurations in to your SCM, make sure you don’t

make the SCM a choke point in your process, so that

you can’t deploy your configurations if you need to roll

out a new software revision or config change. I’ve seen

a lot of people on Twitter and IRC moaning from time

to time, “GitHub is down! How are we going to work?”

The point of a distributed SCM like Git is that you can

continue to work without the server. Designing your

workflow and process so you can’t function in the event

of a Git server going off-l ine (hosted or otherwise) is

simply bad practice.

Configuration Management
Introduction to Configuration Management:

Configuration management (CM) software has been

around for quite a few years, but cloud computing has

brought a very real need to the forefront. The abil ity to

manage a fleet of servers and ensure that all of them

have the same configuration has been top priority for

GEEK GUIDE THE DEVOPS TOOLBOX

12

many DevOps teams, and configuration management

software has been the tool of choice. These technologies

can install software packages, configure them for service

and guarantee that those services are sti l l installed,

configured and in compliance with the policy set by the

DevOps team.

A plethora of CM solutions exist, and each has its

unique strengths. Configuration management systems

frequently are chosen not only for their feature sets,

but also according to the programming language

in which they were written, so keep that in mind if

extensibil ity is an issue for you.

FIGURE 2. Block Diagram of Ansible’s Workflow

GEEK GUIDE THE DEVOPS TOOLBOX

13

Configuration Management Systems: The following

is a list of some of the most popular configuration

management systems at the time of this writing:

n Puppet: Puppet is one of the most popular CM packages

out there, partially due to the fact that it’s licensed as

open source and partially due to the fact that it’s written

in Ruby. Puppet stores its information in “manifests”,

written by a system administrator in Puppet’s own

domain-specific language. Puppet also includes Facter,

a program that will collect attributes about the system

on which it’s running and feed them back to Puppet so

that those facts can be acted on. Puppet has excellent

support, and many freely available add-on modules are

available for it from Puppet Labs’ Puppet Forge. Puppet

can be run in standalone mode, but it’s most frequently

run with an agent installed on each client, talking to a

centralized server. Puppet’s supported operating systems

include Linux and Microsoft Windows.

n Chef: Chef is as equally as popular as Puppet. Like

Puppet, it’s open-source and written in Ruby. Unlike

Puppet, Chef’s information is stored in “recipes” that

are almost pure Ruby code. To make management

simpler, recipes can be compiled into “cookbooks”. Chef

started out as an internal tool for the company Opscode,

but it quickly grew beyond that. Chef also can be run

in standalone mode (called chef-solo), but it’s more

commonly run in a client-server model. Chef primarily

supports Linux, but has some Windows support as well.

GEEK GUIDE THE DEVOPS TOOLBOX

14

n Ansible: Ansible is an open-source CM system, written

in Python. Unlike Puppet and Chef, which have an

agent running on each client, Ansible manages its

nodes over SSH. This means that there’s no installation

of agents or other prerequisites other than SSH with

key-based authentication and Python. Not only does

this save memory on the client machines, it also

lowers network traffic since the clients don’t have to

contact the Ansible controller continually. Ansible’s

modules can be written in any language (such as Perl,

Python or Bash), and Ansible uses YAML in files called

“playbooks” to describe what happens on each node.

n Salt: Salt also is an open-source CM system, and

like Ansible, it’s written in Python. Salt sprang from

a need for a very high-speed execution and data

collection engine for system administrators. Salt

uses a cl ient-server model and supports Linux and

Microsoft Windows.

Monitoring and Instrumentation
Part Alarm Clock, Part Instrument Panel—Your

Monitoring System: Your operation’s monitoring system

Unlike Puppet and Chef, which have an agent
running on each client, Ansible manages its
nodes over SSH.

GEEK GUIDE THE DEVOPS TOOLBOX

15

is just like the instrument panel in your car. It can tell

you the state of the system, how it’s performing, and

what is broken. And just like the instrument panel in your

car, it can tell you only information about what it’s set

up to display. Some cars have oil pressure gauges, while

some have simple indicator lights for oil pressure. Your

monitoring system, however, needs to be as detailed as

possible to achieve your business goals.

There is no “one size fits all” monitoring system. Each

one will have unique plugins, metrics and conditions

to alert and track for every organization. The key to

selecting and implementing the proper monitoring system

is to find one that’s able to scale and grow with your

needs, while providing easy methods to plug in additional

functionality when needed.

To be truly effective, you need to extend your monitoring

system with new abilities from time to time. Did your data

center’s HVAC suddenly malfunction and blow freezing

cold air into your disk array, killing several drives? You

should be able to get an inexpensive temperature monitor

in place to capture this condition and alert your team the

next time the temperature dips below a certain threshold.

Being able to continue to add and grow what system

states you monitor is key to providing a reliable and stable

service to your customers and end users.

An equally important part of any monitoring system is

its ability to alert you when something does go wrong.

Alerts should convey not only what went wrong, but

they also should give DevOps personnel a possible action

to do to remedy the situation, if needed. Configuring

GEEK GUIDE THE DEVOPS TOOLBOX

16

your monitoring system’s alerts can be touchy. If you set

things too sensitive, your engineers will be flooded with

information and become desensitized to the alerts. If

everything’s an emergency, then nothing is an emergency.

However, if things are set too relaxed, real issues will

slide under the radar untouched. If you continually

re-evaluate your alerts and verify that each one is

actionable, you can avoid this issue. Your engineers—and

your customers—will thank you.

Monitoring Packages:

n Nagios: Nagios is one of the most popular monitoring

systems in existence. Part of this is due to its open-

source l icense, and part of this is due to its modular

architecture. Nagios supports many operating

systems, including Linux and Windows, but the real

key to Nagios’ success is in its plugin system. Known

as NRPE (Nagios Remote Plugin Executor), the NRPE

architecture allows developers to write modules for

Nagios easily. Nagios also natively checks via other

protocols, such as HTTP, ICMP and SNMP, but it does

require an agent to run on each host being monitored

to collect data about the host (such as disk space,

CPU util ization and free RAM).

n SolarWinds: SolarWinds is more than a monitoring

package; it’s a modular suite of management software

that can do server and application monitoring,

virtualization monitoring and network storage

management. It’s commercial software, and it’s

GEEK GUIDE THE DEVOPS TOOLBOX

17

very powerful. SolarWinds comes pre-packaged

with all manner of monitors for a typical enterprise

environment. If your environment includes things like

Oracle, Microsoft SQL Server or Exchange, SolarWinds

may be exactly what you need. It’s got the ability to

act as a NetFlow collector and manage disk arrays

like those from NetApp and EMC as well. SolarWinds

aims to be a single pane of glass for an enterprise’s

monitoring needs, and it does a good job of it, but it’s

fairly expensive for that privilege.

n Zabbix: Zabbix is a scalable, open-source monitoring

solution that can be installed atop a standard LAMP

stack (Linux, Apache, MySQL, PHP). Zabbix is fairly

simple to install and has a great network auto-

discovery feature that can allow an engineer to get

an instance running in a short amount of time. It can

be run without an agent, if the hosts to be monitored

support SNMP, but there’s also an agent that optionally

can be installed to get a richer set of monitoring data.

n Cacti: Cacti is primarily a data collection and graphing

engine, although it has some basic monitoring and

alerting abilities too. Cacti is an open-source solution

powered by the RRDtool graphing engine. Owing to the

fact that it’s free to use and can scale quite well, it’s

often used by service providers to provide bandwidth

statistics and other metrics to customers. However,

unless your alerting needs are very basic, Cacti is best

used as a collecting and trending engine.

GEEK GUIDE THE DEVOPS TOOLBOX

18

n Tivoli Monitoring: this monitoring package from IBM

is geared at large enterprise operations who may have

many different departmental needs. It’s got the ability

to monitor and trend not only on-premise systems in

different geographies, but cloud servers as well. If you

have SAP, DB2, MS SQL and other large enterprise-type

services in your environment, Tivoli may be the answer

FIGURE 3. Cacti Screenshot

GEEK GUIDE THE DEVOPS TOOLBOX

19

for you. It is commercial software and runs on most

operating systems, including AIX, HP-UX, Linux, Solaris

and Windows.

Sandboxes
A few other tools are helpful for DevOps personnel to

iterate quickly and test new configurations in a disposable

sandbox environment. A sandbox environment is a place

where engineers can test a change or a new deployment

quickly without disturbing the currently running

production environment.

Desktop Virtualization: With laptops and workstations

becoming more powerful through the years, it’s feasible

to run a low-capacity production analog on an engineer’s

local computer, inside a virtual machine or a group of

virtual machines. This can not only be a huge cost savings,

as the organization doesn’t need to maintain a lot of test

environments, but it’s also a time savings, because engineers

have full control over the environment while they are doing

their work. Whether your engineers use VMware Workstation

on Windows, VMware Fusion on Macs or the free VirtualBox

software from Oracle on Windows, Mac or Linux, having a

local virtual machine environment is extremely useful.

Rapid Prototype/Deployment Technologies: Once

your engineers have a virtualization package on their

local systems, it’s best if they can spin up virtual machines

quickly. This can be done via a number of legacy methods

like kickstart, but that requires some network infrastructure

that may not exist in your engineers’ environment.

GEEK GUIDE THE DEVOPS TOOLBOX

20

A new solution to this problem is Vagrant. Vagrant

lets DevOps team members create a snapshot of what

a particular machine in their environment is and then

packages it up into an easily deployed container that

can be pushed to any virtualization environment. If your

production environment is in AWS, but you want to

develop and test locally, that’s not a problem. Vagrant

can allow engineers to test their work locally without

having to spin up an AWS node in the cloud. Once set

up, it’s as simple as issuing a vagrant up command to

fire up the virtualized environment, and in a minute or

two, the engineer is working on a system that resembles

the real environment. It’s great for engineers who work

remotely—there’s nothing l ike testing your changes while

you sip a latte at Starbucks!

Conclusion
DevOps as a concept is all about iterating quickly, failing

early to catch errors and bringing quality to the utter

maximum. Having world-class tools at your engineers’

disposal is critical to achieve this goal, and a huge selection

of tools exist that can help drive your DevOps organization

to new heights. However, in the end, the tools are only as

good as the people, processes and methods that drive them.

You must take the time to evaluate each and select the

technologies that make the most sense for your company,

team and each engineer. Feel free to take the DevOps

Self Assessment at http://www.surveygizmo.com/s3/1659087/

IBM-DevOps-Self-Assessment and see where you can improve

your own organization’s daily operations.n

https://www.surveygizmo.com/s3/1659087/IBM-DevOps-Self-Assessment

GEEK GUIDE THE DEVOPS TOOLBOX

21

“Source control is for everyone” by Michael Jansen:

http://www.embedded.com/design/prototyping-and-

development/4006499/Source-control-is-for-everyone

“You’re Not Using Source Control? Read This!” by LornaJane:

http://www.lornajane.net/posts/2013/source-control-whitepaper

Wikipedia List of Revision Control Software:

http://en.wikipedia.org/wiki/List_of_revision_control_software

Git: http://git-scm.com

GitHub: http://github.com

Atlassian Bitbucket: https://bitbucket.org

Perforce: http://www.perforce.com

Apache Subversion: https://subversion.apache.org

Mercurial: http://mercurial.selenic.com

Open-Source Configuration Management Software (Wikipedia):

http://en.wikipedia.org/wiki/Comparison_of_open-source_

configuration_management_software

Puppet Labs: http://www.puppetlabs.com

Puppet Forge: http://forge.puppetlabs.com

Resources

https://www.embedded.com/design/prototyping-and-development/4006499/Source-control-is-for-everyone
https://www.embedded.com/design/prototyping-and-development/4006499/Source-control-is-for-everyone
https://www.embedded.com/design/prototyping-and-development/4006499/Source-control-is-for-everyone
https://www.lornajane.net/posts/2013/source-control-whitepaper
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://git-scm.com
https://github.com
https://bitbucket.org
https://www.perforce.com
https://subversion.apache.org
https://mercurial.selenic.com
https://www.puppetlabs.com
https://forge.puppetlabs.com
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software

GEEK GUIDE THE DEVOPS TOOLBOX

22

Chef: http://www.chef.io

Ansible: http://www.ansible.com

Salt: http://www.saltstack.com

Nagios: http://www.nagios.org

SolarWinds: http://www.solarwinds.com

Zabbix: http://www.zabbix.com

Cacti: http://www.cacti.net

Tivoli Monitoring:

http://www-03.ibm.com/software/products/en/tivomoni

Atlassian’s Stash: https://www.atlassian.com/software/stash

VMware Workstation:

http://www.vmware.com/products/workstation

VMware Fusion: http://www.vmware.com/products/fusion

VirtualBox: http://www.virtualbox.org

Vagrant: https://www.vagrantup.com

DevOps Practices Self-Assessment: http://www.surveygizmo.com/

s3/1659087/IBM-DevOps-Self-Assessment

https://www.chef.io
https://www.ansible.com
https://www.saltstack.com
https://www.nagios.org
https://www.solarwinds.com
https://www.zabbix.com
https://www.cacti.net
https://www-03.ibm.com/software/products/en/tivomoni
https://www.atlassian.com/software/stash
https://www.vmware.com/products/workstation
https://www.vmware.com/products/fusion
https://www.virtualbox.org
https://www.vagrantup.com
https://www.surveygizmo.com/s3/1659087/IBM-DevOps-Self-Assessment

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	The IBM Solution to Enable DevOps

	The DevOps Toolbox: Tools and Technologies for Scale and Reliability
	Introduction
	Process and Documentation
	Process
	Documentation

	Source Control
	What Is Source Control, and Why Use It?
	Code Review Processes
	Source Control Systems

	Configuration Management
	Introduction to Configuration Management
	Configuration Management Systems

	Monitoring and Instrumentation
	Part Alarm Clock, Part Instrument Panel—Your Monitoring System
	Monitoring Packages

	Sandboxes
	Desktop Virtualization
	Rapid Prototype/Deployment Technologies

	Conclusion

	Resources

